Lumiprobe Sulfo-Cyanine5.5 NHS ester 磺酸基Cy5.5NHS(水溶性)
上海金畔生物代理Lumiprobe品牌全线产品,欢迎新老客户访问Lumiprobe官网或者咨询我们获取更多相关产品信息。
Sulfo-Cyanine5.5 NHS ester 磺酸基Cy5.5NHS
Sulfo-Cyanine5.5 NHS ester is an amine reactive activated ester of sulfonated far red Cyanine5.5 fluorophore, an analog of Cy5.5®. This is a reagent of choice for the labeling of antibodies, sensitive proteins, and others which require reactions in purely aqueous environment, or without any significant additions of organic co-solvents.
The dye is well suitable for non-invasive in vivo NIR imaging, and for the applications requiring low fluorescent background.
17320 | Sulfo-Cyanine 5 .5NHS ester | 1 mg |
27320 | Sulfo-Cyanine 5 .5NHS ester | 5 mg |
47320 | Sulfo-Cyanine 5 .5NHS ester | 25 mg |
57320 | Sulfo-Cyanine 5 .5NHS ester | 50 mg |
67320 | Sulfo-Cyanine 5 .5NHS ester | 100 mg |
General properties
Appearance: | dark blue solid |
Mass spec M+ increment: | 884.15 |
Molecular weight: | 1114.37 |
CAS number: | N/A |
Molecular formula: | C44H42N3K3O16S4 |
Solubility: | good in water, DMF, DMSO |
Quality control: | NMR 1H, HPLC-MS (95%) |
Storage conditions: | Storage: 12 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate. |
Spectral properties
Excitation maximum, nm: | 675 |
ε, L⋅mol−1⋅cm−1: | 235000 |
Emission maximum, nm: | 694 |
CF260: | 0.09 |
CF280: | 0.11 |
Product citations
- Liu, Q.; Tian, J.; Liu, J.; Zhu, M.; Gao, Z.; Hu, X.; Midgley, A.C.; Wu, J.; Wang, Xi.; Kong, D.; Zhuang, J.; Liu, J.; Yan, X.; Huang, X. Modular Assembly of Tumor-Penetrating and Oligomeric Nanozyme Based on Intrinsically Self-Assembling Protein Nanocages. Advanced Materials, in press. doi: 10.1002/adma.202103128
- Lu, Z.; Zhang, Y.; Wang, Y.; Tan, G.-H.; Huang, F.-Y.; Cao, R.; He, N.; Zhang, L. A biotin-avidin-system-based virus-mimicking nanovaccine for tumor immunotherapy. Journal of Controlled Release, 2021, 332, 245–259. doi: 10.1016/j.jconrel.2021.02.029
- Shramova, E.; Proshkina, G.; Shipunova, V.; Ryabova, A.; Kamyshinsky, R.; Konevega, A.; Schulga, A.; Konovalova, E.; Telegin, G.; Deyev, S. Dual Targeting of Cancer Cells with DARPin-Based Toxins for Overcoming Tumor Escape. Cancers, 2020, 12(10), 3014. doi: 10.3390/cancers12103014
- Peplau, E.; De Rose, F.; Reder, S.; Mittelhaeuser, M.; Scafetta, G.; Schwaiger, M.; Weber, W.A.; Bartolazzi, A.; Skerra, A.; D’Alessandria, C. Development of a chimeric Fab directed against human galectin-3 and validation as an immune-PET tracer for the sensitive in vivo imaging of thyroid cancer. Thyroid, 2020, 30(9), 1314–1326. doi: 10.1089/thy.2019.0670
- Sim, T.; Lim, C.; Hoang, N.H.; Shin, Y.; Kim, J.C.; Park, J.Y.; Her, J.; Lee, E.S.; Youn, Y.S.; Oh, K.T. An On-Demand pH-Sensitive Nanocluster for Cancer Treatment by Combining Photothermal Therapy and Chemotherapy. Pharmaceutics, 2020, 12, 839. doi: 10.3390/pharmaceutics12090839
- Lix, K.; Krause, K.D.; Kim, H.; Algar, W.R. Investigation of the Energy Transfer Mechanism Between Semiconducting Polymer Dots and Organic Dyes. Journal of Physical Chemistry C, 2020, 124(31), 17387–17400. doi: 10.1021/acs.jpcc.0c04983
- Wang, J.; Li, Y.; Li, L.; Yang, J.; Kopeček, J. Exploration and Evaluation of Therapeutic Efficacy of Drug-Free Macromolecular Therapeutics in Collagen-Induced Rheumatoid Arthritis Mouse Model. Macromolecular Bioscience, 2020, 20(5), e1900445. doi: 10.1002/mabi.201900445
- Chen, Q.; Gao, M.; Li, Z.; Xiao, Y.; Bai, X.; Boakye-Yiadom, K.O.; Xu, X.; Zhang, X.-Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. Journal of Controlled Release, 2020, 323, 179–190. doi: 10.1016/j.jconrel.2020.03.044
- Taghian, T.; Metelev, V.G.; Zhang, S.; Bogdanov, A.A. Imaging NF-κB activity in a murine model of early stage diabetes. FASEB Journal, 2020, 34(1), 1198–1210. doi: 10.1096/fj.201801147r
- Yin, B.; Chan, C.K.W.; Liu, S.; Hong, H.; Wong, S.H.D.; Lee, L.K.C.; Ho, L.W.C.; Zhang, L.; Leung, K.C.-F.; Choi, P.C.-L.; Bian, L.; Tian, X.Y.; Chan, M.N.; Choi, C.H.J. Intrapulmonary Cellular-Level Distribution of Inhaled Nanoparticles with Defined Functional Groups and Its Correlations with Protein Corona and Inflammatory Response. ACS Nano, 2019, 13(12), 14048–14069. doi: 10.1021/acsnano.9b06424
- Wu, X.; Zhou, J.; Wang, F.; Meng, X.; Chen, J.; Chang, T.-S.; Lee, M.; Li, G.; Li, X.; Appelman, H.D.; Kuick, R.; Wang, T.D. Detection of colonic neoplasia in vivo using near-infrared-labeled peptide targeting cMet. Scientific Reports, 2019, 9, 17917. doi: 10.1038/s41598-019-54385-7
- Khatri, S.; Hansen, J.; Mendes, A.C.; Chronakis, I.S.; Hung, S.-C.; Mellins, E.D.; Astakhova, K. Citrullinated Peptide Epitope Targets Therapeutic Nanoparticles to Human Neutrophils. Bioconjugate Chemistry, 2019, 30(10), 2584–2593. doi: 10.1021/acs.bioconjchem.9b00518
- Wang, Y.; Li, K.; Han, S.; Tian, Y.-H.; Hu, P.-C.; Xu, X.-L.; He, Y.-Q.; Pan, W.-T.; Gao, Y.; Zhang, Z.; Zhang, J.-W.; Wei, L. Chlorotoxin targets ERα/VASP signaling pathway to combat breast cancer. Cancer Medicine, 2019, 8(4), 1679–1693. doi: 10.1002/cam4.2019
- Ha, S.-W.; Hwang, K.; Jin, J.; Cho, A.-S.; Kim, T.Y.; Hwang, S.I.; Lee, H.J.; Kim, C.-Y. Ultrasound-sensitizing nanoparticle complex for overcoming the blood-brain barrier: an effective drug delivery system. International Journal of Nanomedicine, 2019, 14, 3743–3752. doi: 10.2147/ijn.s193258
- Liu, R.; Li, Z.; Marvin, J.S.; Kleinfeld, D. Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nature Methods, 2019, 16, 615–618. doi: 10.1038/s41592-019-0434-7
- Guenter, R.E.; Aweda, T.; Carmona Matos, D.M.; Whitt, J.; Chang, A.W.; Cheng, E.Y.; Liu, X.M.; Chen, H.; Lapi, S.E.; Jaskula-Sztul, R. Pulmonary Carcinoid Surface Receptor Modulation Using Histone Deacetylase Inhibitors. Cancers, 2019, 11(6), 767. doi: 10.3390/cancers11060767
- Kwon, Y.-D.; Oh, J.-M.; La, M.T.; Chung, H.-J.; Lee, S.J.; Chun, S.; Lee, S.-H.; Jeong, B.-H.; Kim, H.-K. Synthesis and Evaluation of Multifunctional Fluorescent Inhibitors with Synergistic Interaction of PSMA and Hypoxia for Prostate Cancer. Bioconjugate Chemistry, 2019, 30(1), 90–100. doi: 10.1021/acs.bioconjchem.8b00767
- Liu, Y.; Wang, Z.; Li, X.; Ma, X.; Wang, S.; Kang, F.; Yang, W.; Ma, W.; Wang, J. Near-infrared Fluorescent Peptides with High Tumor Selectivity: Novel Probes for Image-Guided Surgical Resection of Orthotopic Glioma. Molecular Pharmaceutics, 2019, 16(1), 108–117. doi: 10.1021/acs.molpharmaceut.8b00888
- Jasinski, D.L.; Yin, H.; Li, Z.; Guo, P. The Hydrophobic Effect from Conjugated Chemicals or Drugs on in Vivo Biodistribution of RNA Nanoparticles. Human Gene Therapy, 2018, 29(1), 77–86. doi: 10.1089/hum.2017.054
- Park, S.; Shevlin, E.; Vedvyas, Y.; Zaman, M.; Park, S.; Hsu, Y.-M.S.; Min, I.M.; Jin, M.M. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Scientific Reports, 2017, 7, 14366. doi: 10.1038/s41598-017-14749-3
- Zhang, C.; Zhao, X.; Guo, S.; Lin, T.; Guo, H. Highly effective photothermal chemotherapy with pH-responsive polymer-coated drug-loaded melanin-like nanoparticles. International Journal of Nanomedicine, 2017, 12, 1827–1840. doi: 10.2147/ijn.s130539
- Duan, X.; Li, H.; Zhou, J.; Zhou, Q.; Oldham, K.R.; Wang, T.D. Visualizing epithelial expression of EGFR in vivo with distal scanning side-viewing confocal endomicroscope. Scientific Reports, 2016, 6, 37315. doi: 10.1038/srep37315
- Zhou, Q.; Li, Z.; Zhou, J.; Joshi, B.P.; Li, G.; Duan, X.; Kuick, R.; Owens, S.R.; Wang, T.D. In vivo photoacoustic tomography of EGFR overexpressed in hepatocellular carcinoma mouse xenograft. Photoacoustics, 2016, 4(2), 43–54. doi: 10.1016/j.pacs.2016.04.001
- Abolmaali, S.; Tamaddon, A.; Kamali-Sarvestani, E.; Ashraf, M.; Dinarvand, R. Stealth Nanogels of Histinylated Poly Ethyleneimine for Sustained Delivery of Methotrexate in Collagen-Induced Arthritis Model. Pharmaceutical Research, 2015, 32(10), 3309–3323. doi: 10.1007/s11095-015-1708-0